
Gravitational Attraction
What would happen if two people out in space a few meters apart, abandoned by their spacecraft, decided to wait until gravity pulled them together? My initial thought was that …
In #science
Going back a few years I published an article simplifying the calculations for atmospheric greenhouse gas effects for undergraduate non-science majors,
Blais, B. (2003). Teaching energy balance using round numbers. Physics education, 38(6), 519.
I recently came across another article which does a similar thing, but using slightly different notation and terminology,
LoPresto, M. C. (2013). Adding albedo and atmospheres. The Physics Teacher, 51(3), 152-153.
In the spirit of reproducibility I wanted to see if I could connect LoPresto's results with mine.
In my method, the amount of energy entering the Earth system is the round number <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi><mo>=</mo><mn>100</mn><mi mathvariant="normal">/</mi><msup><mi>r</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">S=100/r^2</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math> is the distance from the sun in astronomical units (AU). In these units, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">r=1</annotation></semantics></math> for the Earth. The temperature of the surface, or any atmospheric layer, is related to the energy output of that layer, derived to be <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnspacing="1em" rowspacing="0.16em"><mtr><mtd class="mtr-glue"></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><msup><mrow><mo fence="true">(</mo><mfrac><mi>T</mi><mrow><mn>88.5</mn><mtext>K</mtext></mrow></mfrac><mo fence="true">)</mo></mrow><mn>4</mn></msup><mo>=</mo><mi>E</mi></mrow></mstyle></mtd><mtd class="mtr-glue"></mtd><mtd class="mml-eqn-num"></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{equation} \left(\frac{T}{88.5 \text{K}}\right)^4 = E \end{equation} </annotation></semantics></math> We look at a simple 1-layer model, where the short-wavelength albedo is <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> and the atmosphere absorbs some fraction, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math>, of the long-wavelength radiation.
we get energy balance equations of
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnalign="right left" columnspacing="0em" rowspacing="0.25em"><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo>+</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo>⋅</mo><mi>S</mi><mo>−</mo><msub><mi>E</mi><mi>s</mi></msub><mo>+</mo><msub><mi>E</mi><mn>1</mn></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo>+</mo><mi>γ</mi><msub><mi>E</mi><mi>s</mi></msub><mo>−</mo><msub><mi>E</mi><mn>1</mn></msub><mo>−</mo><msub><mi>E</mi><mn>1</mn></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} +(1-a)\cdot S -E_s + E_1 &=0 \\ +\gamma E_s - E_1 - E_1 &=0 \end{aligned} </annotation></semantics></math>
which leads to solutions for the energy emitted from the surface and the layer 1, as well as the corresponding temperatures,
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnalign="right left" columnspacing="0em" rowspacing="0.25em"><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi>γ</mi><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><mrow><mn>2</mn><mo>−</mo><mi>γ</mi></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mn>2</mn><msub><mi>E</mi><mn>1</mn></msub></mrow><mi>γ</mi></mfrac><mo>=</mo><mfrac><mrow><mn>2</mn><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><mrow><mn>2</mn><mo>−</mo><mi>γ</mi></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>T</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>88.5</mn><mtext> K</mtext><mo>⋅</mo><msup><mrow><mo fence="true">(</mo><mfrac><mrow><mi>γ</mi><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><mrow><mn>2</mn><mo>−</mo><mi>γ</mi></mrow></mfrac><mo fence="true">)</mo></mrow><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>T</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>88.5</mn><mtext> K</mtext><mo>⋅</mo><msup><mrow><mo fence="true">(</mo><mfrac><mrow><mn>2</mn><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><mrow><mn>2</mn><mo>−</mo><mi>γ</mi></mrow></mfrac><mo fence="true">)</mo></mrow><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup><mo>=</mo><msub><mi>T</mi><mn>1</mn></msub><mo>⋅</mo><msup><mn>2</mn><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup><mo>⋅</mo><mo stretchy="false">(</mo><mn>2</mn><mo>−</mo><mi>γ</mi><msup><mo stretchy="false">)</mo><mrow><mo>−</mo><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} E_1&=\frac{\gamma S \cdot (1-a)}{2-\gamma} \\ E_s&=\frac{2E_1}{\gamma}=\frac{2 S \cdot (1-a)}{2-\gamma}\\ T_1&=88.5\text{ K}\cdot \left(\frac{\gamma S \cdot (1-a)}{2-\gamma}\right)^{1/4} \\ T_s&=88.5\text{ K}\cdot \left(\frac{2 S \cdot (1-a)}{2-\gamma}\right)^{1/4} = T_1 \cdot 2^{1/4}\cdot (2-\gamma)^{-1/4} \end{aligned} </annotation></semantics></math>
We can check a few extreme cases, like <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\gamma=0</annotation></semantics></math> (no atmosphere), <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnalign="right left" columnspacing="0em" rowspacing="0.25em"><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>T</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>88.5</mn><mtext> K</mtext><mo>⋅</mo><msup><mrow><mo fence="true">(</mo><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} E_1&=0 \\ E_s&=S \cdot (1-a) \\ T_s&=88.5\text{ K}\cdot \left(S \cdot (1-a)\right)^{1/4} \end{aligned} </annotation></semantics></math> and an infrared-opaque atmosphere, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\gamma=1</annotation></semantics></math>,
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnalign="right left" columnspacing="0em" rowspacing="0.25em"><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>T</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>88.5</mn><mtext> K</mtext><mo>⋅</mo><msup><mrow><mo fence="true">(</mo><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>T</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>88.5</mn><mtext> K</mtext><mo>⋅</mo><msup><mrow><mo fence="true">(</mo><mn>2</mn><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} E_1&=S \cdot (1-a) \\ E_s&=2 S \cdot (1-a)\\ T_1&=88.5\text{ K}\cdot \left(S \cdot (1-a)\right)^{1/4} \\ T_s&=88.5\text{ K}\cdot \left(2S \cdot (1-a)\right)^{1/4} \\ \end{aligned} </annotation></semantics></math> Using the numbers from LoPresto, M. C. (2013), where the albedo (<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math>) is measured but the long-wavelength radiation fraction of absorption (<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math>) is inferred^[LoPresto uses values for the properties of the atmosphere in their table, but admits there is a lot of variation. I prefer to infer the values from the temperatures, and discuss whether it makes sense.], we get
Albedo | T Obs. [K] | Distance from Sun [AU] | T (no atm) [K] | T (γ=0.3) [K] | γ (best fit) | |
---|---|---|---|---|---|---|
Mercury | 0.119 | 400 | 0.39 | 434.2 | 452.2 | -0.776 |
Venus | 0.75 | 737 | 0.72 | 233.2 | 242.9 | 1.98 |
Earth | 0.306 | 288 | 1 | 255.4 | 266 | 0.762 |
Mars | 0.25 | 225 | 1.52 | 211.2 | 220 | 0.446 |
Jupiter | 0.343 | 124 | 5.2 | 110.5 | 115.1 | 0.739 |
Saturn | 0.342 | 97 | 9.58 | 81.4 | 84.8 | 1.006 |
Uranus | 0.3 | 58 | 19.22 | 58.4 | 60.8 | -0.054 |
Neptune | 0.29 | 59 | 30.07 | 46.8 | 48.8 | 1.205 |
There are several things to note here. If we interpret <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math> as the fraction absorbed, both <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi><mo><</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\gamma<0</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi><mo>></mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\gamma>1</annotation></semantics></math> are physically impossible. The former indicates that there is no atmosphere and we must be within uncertainties in the albedo or observed temperature. The latter is something we can address, by modifying the model. This is done by deriving the equations used in LoPresto, M. C. (2013).
From the paper,
LoPresto, M. C. (2013). Adding albedo and atmospheres. The Physics Teacher, 51(3), 152-153.
we are given the result from a multi-layer model atmosphere. Their result for the case without an atmosphere is <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>T</mi><mi>e</mi></msub><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><msup><mo stretchy="false">)</mo><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup><mrow><mo fence="true">(</mo><mfrac><mn>279</mn><msup><mi>r</mi><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup></mfrac><mo fence="true">)</mo></mrow><mtext> K</mtext></mrow><annotation encoding="application/x-tex"> T_e=(1-a)^{1/4}\left(\frac{279}{r^{1/2}}\right)\text{ K} </annotation></semantics></math> which we call <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>T</mi><mi>e</mi></msub></mrow><annotation encoding="application/x-tex">T_e</annotation></semantics></math> for effective radiative temperature.^[LoPresto calls it simply <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> which we find unclear.]. This is the same as our <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\gamma=0</annotation></semantics></math> case, <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnalign="right left" columnspacing="0em" rowspacing="0.25em"><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>T</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>88.5</mn><mtext> K</mtext><mo>⋅</mo><msup><mrow><mo fence="true">(</mo><mi>S</mi><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>T</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>88.5</mn><mtext> K</mtext><mo>⋅</mo><msup><mrow><mo fence="true">(</mo><mfrac><mn>100</mn><msup><mi>r</mi><mn>2</mn></msup></mfrac><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo fence="true">)</mo></mrow><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>279</mn><mtext> K</mtext><mo>⋅</mo><mfrac><mn>1</mn><msup><mi>r</mi><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup></mfrac><mo>⋅</mo><msup><mrow><mo fence="true">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo fence="true">)</mo></mrow><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} T_s&=88.5\text{ K}\cdot \left(S \cdot (1-a)\right)^{1/4}\\ T_s&=88.5\text{ K}\cdot \left(\frac{100}{r^2} \cdot (1-a)\right)^{1/4}\\ &=279\text{ K} \cdot \frac{1}{r^{1/2}}\cdot \left(1-a\right)^{1/4} \end{aligned} </annotation></semantics></math> They then include a greenhouse, and derive the temperature to be <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>T</mi><mi>g</mi></msub><mo>=</mo><msup><mn>2</mn><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup><mo>⋅</mo><msub><mi>T</mi><mi>e</mi></msub></mrow><annotation encoding="application/x-tex"> T_g = 2^{1/4}\cdot T_e </annotation></semantics></math> which is equivalent to our case above with <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\gamma=1</annotation></semantics></math>. They then quote a result, <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>T</mi><mi>g</mi></msub><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>τ</mi><msup><mo stretchy="false">)</mo><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup><mo>⋅</mo><msub><mi>T</mi><mi>e</mi></msub></mrow><annotation encoding="application/x-tex"> T_g = (1+\tau)^{1/4}\cdot T_e </annotation></semantics></math> without derivation, of which their previous result is a special case (<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>τ</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\tau=1</annotation></semantics></math>). The value <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>τ</mi></mrow><annotation encoding="application/x-tex">\tau</annotation></semantics></math> is called the "total extinction thickness" and is the number of layers that completely absorb infrared radiation (i.e. long wavelength). So there must be some connection between my <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math> and their <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>τ</mi></mrow><annotation encoding="application/x-tex">\tau</annotation></semantics></math>.
To derive their result, we add more layers to the original model, and assume that every layer absorbs 100% of the radiation entering it from other layers.
The energy balance equations for <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> such layers is,
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnalign="right left" columnspacing="0em" rowspacing="0.25em"><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo>+</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo>⋅</mo><mi>S</mi><mo>−</mo><msub><mi>E</mi><mi>s</mi></msub><mo>+</mo><msub><mi>E</mi><mn>1</mn></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo>+</mo><msub><mi>E</mi><mi>s</mi></msub><mo>−</mo><msub><mi>E</mi><mn>1</mn></msub><mo>−</mo><msub><mi>E</mi><mn>1</mn></msub><mo>+</mo><msub><mi>E</mi><mn>2</mn></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo>+</mo><msub><mi>E</mi><mn>1</mn></msub><mo>−</mo><msub><mi>E</mi><mn>2</mn></msub><mo>−</mo><msub><mi>E</mi><mn>2</mn></msub><mo>+</mo><msub><mi>E</mi><mn>3</mn></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace height="1.5em" mathbackground="black" width="0em"></mspace></mpadded></mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo>+</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>+</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo>+</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>E</mi><mi>n</mi></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo>+</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>E</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mi>n</mi></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} +(1-a)\cdot S -E_s + E_1 &=0 \\ +E_s - E_1 - E_1 + E_2&=0 \\ +E_1 - E_2 - E_2 + E_3&=0 \\ &\vdots\\ +E_{n-3} - E_{n-2} - E_{n-2} + E_{n-1}&=0 \\ +E_{n-2} - E_{n-1} - E_{n-1} + E_n&=0 \\ +E_{n-1} - E_{n} - E_{n}&=0 \end{aligned} </annotation></semantics></math> You can confirm that this works for the <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>=</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">n=3</annotation></semantics></math> model shown. Notice that there is an asymmetry in the equations, with the surface-layer and the top-layer equations a little different from the others.
Solving from the top layer (last equation) down to the surface we get <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnalign="right left" columnspacing="0em" rowspacing="0.25em"><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><msub><mi>E</mi><mi>n</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>E</mi><mi>n</mi></msub><mo>=</mo><mn>3</mn><msub><mi>E</mi><mi>n</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>4</mn><msub><mi>E</mi><mi>n</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mi><mi mathvariant="normal">⋮</mi><mpadded height="0em" voffset="0em"><mspace height="1.5em" mathbackground="black" width="0em"></mspace></mpadded></mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mn>2</mn></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo><mo>⋅</mo><msub><mi>E</mi><mi>n</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo>⋅</mo><msub><mi>E</mi><mi>n</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo stretchy="false">)</mo><mo>⋅</mo><msub><mi>E</mi><mi>n</mi></msub></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} E_{n-1}&=2E_n \\ E_{n-2}&=2E_{n-1}-E_n = 3E_n \\ E_{n-3}&=2E_{n-2}-E_{n-1} = 4E_n \\ &\vdots\\ E_{2}&=(1+n-2)\cdot E_n\\ E_{1}&=(1+n-1)\cdot E_n\\ E_{s}&=(1+n)\cdot E_n \end{aligned} </annotation></semantics></math> From the first balance equation we <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnalign="right left" columnspacing="0em" rowspacing="0.25em"><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo>+</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo>⋅</mo><mi>S</mi><mo>−</mo><msub><mi>E</mi><mi>s</mi></msub><mo>+</mo><msub><mi>E</mi><mn>1</mn></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo>⋅</mo><mi>S</mi><mo>−</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo stretchy="false">)</mo><mo>⋅</mo><msub><mi>E</mi><mi>n</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo>⋅</mo><msub><mi>E</mi><mi>n</mi></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo>⋅</mo><mi>S</mi><mo>−</mo><msub><mi>E</mi><mi>n</mi></msub></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>0</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mi>n</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo>⋅</mo><mi>S</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} +(1-a)\cdot S -E_s + E_1 &=0 \\ (1-a)\cdot S - (1+n)\cdot E_n + (1+n-1)\cdot E_n&=0 \\ (1-a)\cdot S-E_n&=0 \\ E_n&=(1-a)\cdot S \end{aligned} </annotation></semantics></math>
Our final result for the energy output of the surface in the multi-layer model is,
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnalign="right left" columnspacing="0em" rowspacing="0.25em"><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo stretchy="false">)</mo><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo>⋅</mo><mi>S</mi></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>T</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mn>88.5</mn><mtext> K</mtext><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>n</mi><msup><mo stretchy="false">)</mo><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup><mo>⋅</mo><msup><mrow><mo fence="true">(</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo>⋅</mo><mi>S</mi><mo fence="true">)</mo></mrow><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>n</mi><msup><mo stretchy="false">)</mo><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup><mo>⋅</mo><msub><mi>T</mi><mi>e</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow></mrow></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>τ</mi><msup><mo stretchy="false">)</mo><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mn>4</mn></mrow></msup><mo>⋅</mo><msub><mi>T</mi><mi>e</mi></msub></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} E_{s}&=(1+n)\cdot (1-a)\cdot S \\ T_s &=88.5 \text{ K}\cdot (1+n)^{1/4}\cdot \left((1-a)\cdot S\right)^{1/4} \\ &=(1+n)^{1/4} \cdot T_e \\ &=(1+\tau)^{1/4} \cdot T_e \\ \end{aligned} </annotation></semantics></math> Where the last step is the result from LoPresto, where it is clear that the number of layers, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>, is equivalent to their "total extinction thickness", <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>τ</mi></mrow><annotation encoding="application/x-tex">\tau</annotation></semantics></math>.
Connecting my <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi></mrow><annotation encoding="application/x-tex">\gamma</annotation></semantics></math> to LoPresto's <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>τ</mi></mrow><annotation encoding="application/x-tex">\tau</annotation></semantics></math> we get
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>2</mn><mrow><mn>2</mn><mo>−</mo><mi>γ</mi></mrow></mfrac><mo>=</mo><mn>1</mn><mo>+</mo><mi>τ</mi></mrow><annotation encoding="application/x-tex"> \frac{2}{2-\gamma}=1+\tau </annotation></semantics></math> or <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>τ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>τ</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex"> \gamma=\frac{2\tau}{1+\tau} </annotation></semantics></math> We can then reproduce the table above
Albedo | T Obs. [K] | Distance from Sun [AU] | T (no atm) [K] | γ (best fit) | τ (best fit) | T (best fit) | |
---|---|---|---|---|---|---|---|
Mercury | 0.119 | 400 | 0.39 | 434.2 | -0.776 | -0.28 | 400 |
Venus | 0.75 | 737 | 0.72 | 233.2 | 1.98 | 98.729 | 736.9 |
Earth | 0.306 | 288 | 1 | 255.4 | 0.762 | 0.616 | 288 |
Mars | 0.25 | 225 | 1.52 | 211.2 | 0.446 | 0.287 | 225 |
Jupiter | 0.343 | 124 | 5.2 | 110.5 | 0.739 | 0.586 | 124 |
Saturn | 0.342 | 97 | 9.58 | 81.4 | 1.006 | 1.013 | 97 |
Uranus | 0.3 | 58 | 19.22 | 58.4 | -0.054 | -0.026 | 58 |
Neptune | 0.29 | 59 | 30.07 | 46.8 | 1.205 | 1.516 | 58.9 |
The interpretation of, say, Venus's <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>τ</mi><mo>=</mo><mn>98</mn></mrow><annotation encoding="application/x-tex">\tau=98</annotation></semantics></math> (100 effective layers!) is much easier using this result rather than the physically unreasonable <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>γ</mi><mo>=</mo><mn>1.98</mn></mrow><annotation encoding="application/x-tex">\gamma=1.98</annotation></semantics></math>. In teaching this concept to students again, I may sketch the derivation, and then quote the result:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable columnalign="right left" columnspacing="0em" rowspacing="0.25em"><mtr><mtd><mstyle displaystyle="true" scriptlevel="0"><msub><mi>E</mi><mi>s</mi></msub></mstyle></mtd><mtd><mstyle displaystyle="true" scriptlevel="0"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo stretchy="false">)</mo><mo>⋅</mo><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>a</mi><mo stretchy="false">)</mo><mo>⋅</mo><mi>S</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex"> \begin{aligned} E_{s}&=(1+n)\cdot (1-a)\cdot S \end{aligned} </annotation></semantics></math> which has a reasonably intuitive simple form. I imagine there may be other useful comparisons to make.