It is said that a published work without the code is little more than an advertisement. It is for this reason that I try to make sure that I publish all of the code needed reproduce any work that I do, and encourage all researchers to do the same.
I recently had to go through Richard Carrier's In Richard Carrier’s On the Historicity of Jesus[@carrier2014historicity] the author calculates the probability of the historicity of Jesus, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>h</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(h)</annotation></semantics></math>P(h), and Jesus mythicism, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi mathvariant="normal">¬</mi><mi>h</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(\neg h)</annotation></semantics></math>P(¬h). Although his numbers are sometimes based on quantitative estimates, many are not. His probability is contained in the summary tables in his book.[@carrier2014historicity, p. 597]. Unfortunately, the tables are all scattered through the book and he doesn't explicitly lay out the equations for the final calculation. Here, as an exercise, I show his full calculation and in the process developed some Python code to make such calculations and their presentation easier.
Note that the term ‘prior probability’ here depends on what one calls evidence – the posterior of one calculation becomes the prior for the next – because it is ‘prior’ to new evidence. Unlike Carrier, we prefer to make explicit the evidence used at all steps, even from the start.
Summary of Carrier's Prior
Carrier’s prior probability is based on a reference class consisting of two defining features,
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>e</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">e_1</annotation></semantics></math>e1 - the reference class member is a person from Mediterranean Antiquity,
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>e</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">e_2</annotation></semantics></math>e2 - the reference class member is a Rank-Raglan hero.
Here Carrier uses a set of 14 Rank-Raglan heroes and proceeds to calculate the probability of historicity in two ways: a charitable-to-historicity calculation (a fortiori) with 4 out of the 14 historical and a non-charitable calculation (a judicantiori) with 0 out of the 14 historical. The data Carrier uses for these cases is shown in the following table:
Carrier then applies Laplace's Rule of Succession[@Jaynes2003] to calculate the relevant probabilities. Laplace's Rule of Succession arises from the process of estimating a proportion, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math>θ, given <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math>s "successes" out of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math>N total samples (e.g. flipping <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math>s heads out of a total <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math>N flips of a coin). The mean value of the proportion, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math>θ, assuming a uniform distribution for <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math>θ is
Intuitively, this is the fraction of successes one would observe if, in addition to the actual data, we have one extra "success" and one extra "failure".
Applied to Carrier’s own calculations, we get a charitable-to-historicity (a fortiori) calculation:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>h</mi><mi mathvariant="normal">∣</mi><msub><mi>e</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><msub><mi>N</mi><mi>h</mi></msub><mo>+</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>4</mn><mo>+</mo><mn>1</mn></mrow><mrow><mn>14</mn><mo>+</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mn>0.31</mn><mo>∼</mo><mn>1</mn><mi mathvariant="normal">/</mi><mn>3</mn><mtext> (rounded up)</mtext></mrow><annotation encoding="application/x-tex">P(h|e_1,e_2) = \frac{N_h+1}{N+2}=\frac{4+1}{14+2}=0.31 \sim 1/3\text{ (rounded up)}</annotation></semantics></math>P(h∣e1,e2)=N+2Nh+1=14+24+1=0.31∼1/3 (rounded up)
We also get a non-charitable (a judicantiori) calculation:
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>h</mi><mi mathvariant="normal">∣</mi><msub><mi>e</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><msub><mi>N</mi><mi>h</mi></msub><mo>+</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>0</mn><mo>+</mo><mn>1</mn></mrow><mrow><mn>14</mn><mo>+</mo><mn>2</mn></mrow></mfrac><mo>=</mo><mn>0.06</mn></mrow><annotation encoding="application/x-tex">P(h|e_1,e_2) = \frac{N_h+1}{N+2}=\frac{0+1}{14+2}=0.06</annotation></semantics></math>P(h∣e1,e2)=N+2Nh+1=14+20+1=0.06
An alternate method
Another way to do the same calculation (giving the same result, as expected) is to write out a full Bayes' theorem formulation for <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>h</mi><mi mathvariant="normal">∣</mi><msub><mi>e</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(h|e_1,e_2)</annotation></semantics></math>P(h∣e1,e2), and using an uninformative prior on <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>h</mi></mrow><annotation encoding="application/x-tex">h</annotation></semantics></math>h given that we're talking about people from Mediterranean antiquity, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>h</mi><mi mathvariant="normal">∣</mi><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo stretchy="false">(</mo><mi mathvariant="normal">¬</mi><mi>h</mi><mi mathvariant="normal">∣</mi><msub><mi>e</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mn>0.5</mn></mrow><annotation encoding="application/x-tex">P(h|e_1)=P(\neg h|e_1)=0.5</annotation></semantics></math>P(h∣e1)=P(¬h∣e1)=0.5. In this formulation, the Rank-Raglan feature (<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>e</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">e_2</annotation></semantics></math>e2) is now evidence and Carrier's "prior" is a posterior on that evidence. This has the advantage of being able to handle some data that is independent of <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>e</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">e_2</annotation></semantics></math>e2 and some that is dependent on <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>e</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">e_2</annotation></semantics></math>e2 which we will see below.
As a matter of process, we choose to calculate Bayes' Theorem in three steps as described in [@Blais:2014aa]:
calculate just the numerators for all models
calculate the total probability (i.e. denominator) from the sum of the numerators
divide each numerator by the total probability, yielding the final posterior probabilities
We find this makes the layout of the calculation more consistent and clear, and as a bonus, we rely less on posterior ratios.
This approach yields identical results -- as it should.^[E.T. Jaynes refers to this as "equivalent states of knowledge must have equivalent probability assignments."]
Carrier's Original Posterior Calculation
For completeness we show the result of Carrier's original posterior calculation, using evidence he presents in [@carrier2014historicity], which we denote as <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>c</mi><mi>i</mi></msub><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{c_i\}</annotation></semantics></math>{ci}. While Carrier's prior probability calculation was based on counts of texts, the rest of his calculations come from his personal judgments on specific aspects of the texts. His calculations involve looking at Extrabiblical texts, Acts of the Apostles, the Gospels, and the Epistles of Paul. He further assumes the statistical independence of all of these individual judgments, which may be questionable. We won't explore these problems here, but proceed to reproduce his calculation as-is. The procedure is then
list off each individual likelihood ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><msub><mi>c</mi><mi>i</mi></msub><mi mathvariant="normal">∣</mi><mi>h</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mi>P</mi><mo stretchy="false">(</mo><msub><mi>c</mi><mi>i</mi></msub><mi mathvariant="normal">∣</mi><mi mathvariant="normal">¬</mi><mi>h</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(c_i|h)/P(c_i|\neg h)</annotation></semantics></math>P(ci∣h)/P(ci∣¬h), for each piece of Carrier's judgments <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">c_i</annotation></semantics></math>ci,
multiply them all, assuming independence
multiply by the prior odds ratio to get the posterior odds ratio
convert to the probability of historicity, <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>h</mi><mi mathvariant="normal">∣</mi><msub><mi>e</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>e</mi><mn>2</mn></msub><mo separator="true">,</mo><mrow><mo fence="true">{</mo><msub><mi>c</mi><mi>i</mi></msub><mo fence="true">}</mo></mrow><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(h|e_1,e_2,\left\{c_i\right\})</annotation></semantics></math>P(h∣e1,e2,{ci})
The following table shows each prior or likelihood ratio for this entire process, both for the charitable and the uncharitable calculations.
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>5</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{5} :=</annotation></semantics></math>c5:= Ignatius and Ascension of Isaiah
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>13</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{13} :=</annotation></semantics></math>c13:= Lack of gainsaying witnesses
1
1
Extrabiblical
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>14</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{14} :=</annotation></semantics></math>c14:= Vanishing family et al.
4/5
2/5
Acts
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>15</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{15} :=</annotation></semantics></math>c15:= Omissions in Paul's trials
9/10
1/2
Acts
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>16</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{16} :=</annotation></semantics></math>c16:= Remainder of Acts
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>18</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{18} :=</annotation></semantics></math>c18:= Other canonical Epistles
4/5
3/5
Epistles
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>19</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{19} :=</annotation></semantics></math>c19:= Gospels in Paul, Hebrews, Colossians
3/5
2/5
Epistles
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>20</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{20} :=</annotation></semantics></math>c20:= Things Jesus said
1
1
Epistles
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>21</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{21} :=</annotation></semantics></math>c21:= The Eucharist (1 Cor. 11.23-26)
1
1
Epistles
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>22</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{22} :=</annotation></semantics></math>c22:= Things Jesus did
3/4
1/2
Epistles
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>23</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{23} :=</annotation></semantics></math>c23:= Made from sperm
2
1
Epistles
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>24</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{24} :=</annotation></semantics></math>c24:= Made from a woman
2
1
Epistles
<math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>25</mn></msub><mo>:</mo><mo>=</mo></mrow><annotation encoding="application/x-tex">c_{25} :=</annotation></semantics></math>c25:= Brothers of the Lord
One thing about this calculation is that it is fairly long and quite tedious. There are a number of places it can go wrong. Updating with new data becomes a challenge of bookkeeping, and it is a challenge to make sure that the equations written match the data and the numerical results without typos or missing terms. This is the sort of thing that computers do quite well - tedious and systematic calculations and presentations.
What would happen if two people out in space a few meters apart, abandoned by their spacecraft, decided to wait until gravity pulled them together? My initial thought was that …
A Simple Physics Problem Gets Messy
A physics problem from a practice AP test came to my attention, when my daughter was in AP physics this past spring. I went over her solutions when she did …
Skepticism and Dubious Medical Procedures
In my discussion with Jonathan McLatchie on the Still Unbelievable podcast, I said that there hasn’t been a verified miracle claim even since Hume’s essay on miracles. Here I look into the papers he references in response.
Get in touch
What problems are you interested in? How can I help?